Synaptically evoked glutamate transporter currents in Spinal Dorsal Horn Astrocytes

نویسندگان

  • Haijun Zhang
  • Wenjun Xin
  • Patrick M Dougherty
چکیده

BACKGROUND Removing and sequestering synaptically released glutamate from the extracellular space is carried out by specific plasma membrane transporters that are primarily located in astrocytes. Glial glutamate transporter function can be monitored by recording the currents that are produced by co-transportation of Na+ ions with the uptake of glutamate. The goal of this study was to characterize glutamate transporter function in astrocytes of the spinal cord dorsal horn in real time by recording synaptically evoked glutamate transporter currents. RESULTS Whole-cell patch clamp recordings were obtained from astrocytes in the spinal substantia gelatinosa (SG) area in spinal slices of young adult rats. Glutamate transporter currents were evoked in these cells by electrical stimulation at the spinal dorsal root entry zone in the presence of bicuculline, strychnine, DNQX and D-AP5. Transporter currents were abolished when synaptic transmission was blocked by TTX or Cd2+. Pharmacological studies identified two subtypes of glutamate transporters in spinal astrocytes, GLAST and GLT-1. Glutamate transporter currents were graded with stimulus intensity, reaching peak responses at 4 to 5 times activation threshold, but were reduced following low-frequency (0.1 - 1 Hz) repetitive stimulation. CONCLUSION These results suggest that glutamate transporters of spinal astrocytes could be activated by synaptic activation, and recording glutamate transporter currents may provide a means of examining the real time physiological responses of glial cells in spinal sensory processing, sensitization, hyperalgesia and chronic pain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glutamate Release Monitored with Astrocyte Transporter Currents during LTP

Long-term potentiation (LTP) of synaptic transmission in the CA1 region of the hippocampus is thought to result from either increased transmitter release, heightened postsynaptic sensitivity, or a combination of the two. We have measured evoked glutamate release from Schaffer collateral/commissural fiber terminals in CA1 by recording synaptically activated glutamate transporter currents in hipp...

متن کامل

Inward currents induced by ischemia in rat spinal cord dorsal horn neurons

Hypoxia and ischemia occur in the spinal cord when blood vessels of the spinal cord are compressed under pathological conditions such as spinal stenosis, tumors, and traumatic spinal injury. Here by using spinal cord slice preparations and patch-clamp recordings we investigated the influence of an ischemia-simulating medium on dorsal horn neurons in deep lamina, a region that plays a significan...

متن کامل

Bidirectional neuron-glia interactions triggered by deficiency of glutamate uptake at spinal sensory synapses.

Bidirectional interactions between neurons and glial cells are crucial to the genesis of pathological pain. The mechanisms regulating these interactions and the role of this process in relaying synaptic input in the spinal dorsal horn remain to be established. We studied the role of glutamate transporters in the regulation of such interactions. On pharmacological blockade of glutamate transport...

متن کامل

Increased C-fiber nociceptive input potentiates inhibitory glycinergic transmission in the spinal dorsal horn.

Glycine is an important inhibitory neurotransmitter in the spinal cord, but it also acts as a coagonist at the glycine site of N-methyl-d-aspartate (NMDA) receptors to potentiate nociceptive transmission. However, little is known about how increased nociceptive inflow alters synaptic glycine release in the spinal dorsal horn and its functional significance. In this study, we performed whole-cel...

متن کامل

Propofol differentially inhibits the release of glutamate, γ-aminobutyric acid and glycine in the spinal dorsal horn of rats

Objective(s): Propofol (2, 6-diisopropylphenol) is an intravenous anesthetic that is commonly used for the general anesthesia. It is well known that the spinal cord is one of the working targets of general anesthesia including propofol. However, there is a lack of investigation of the effects of propofol on spinal dorsal horn which is important for the sensory transmission of nociceptive signal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular Pain

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2009